CEPC Booster Optimization Design towards TDR

Dou Wang on behalf of CEPC AP group

Many Thanks to: K. Oide, Y. Cai, M. Koratzinos

IAS Program on High Energy Physics, Jan. 20-24, 2019. Hong Kong.

Outline

- Introduction
- Design requirements
- Geometry & optics
- Performance with errors
- Ramping curves & eddy current effect
- TDR plan
- Summary

CEPC CDR Parameters

	Higgs	W	Z (3T)	Z (2T)		
Number of IPs	2					
Beam energy (GeV)	120	80	45.5			
Circumference (km)		100				
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.03	0.036		
Crossing angle at IP (mrad)		16.5×2				
Piwinski angle	3.48	7.0	23.8	3		
Number of particles/bunch N_e (10 ¹⁰)	15.0	12.0	8.0			
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25ns+	-10%gap)		
Beam current (mA)	17.4	87.9	461.	0		
Synchrotron radiation power /beam (MW)	30	30	16.5	5		
Bending radius (km)	10.7					
Momentum compact (10 ⁻⁵)	1.11					
β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001		
Emittance $\varepsilon_x/\varepsilon_v$ (nm)	1.21/0.0024	0.54/0.0016	0.18/0.004	0.18/0.0016		
Beam size at IP $\sigma_x/\sigma_v(\mu m)$	20.9/0.06	13.9/0.049	6.0/0.078	6.0/0.04		
Beam-beam parameters ξ_x/ξ_y	0.018/0.109	0.013/0.123	0.004/0.06	0.004/0.079		
RF voltage V_{RF} (GV)	2.17	0.47	0.10			
RF frequency f_{RF} (MHz) (harmonic)		650 (216816)				
Natural bunch length σ_{z} (mm)	2.72	2.98	2.42			
Bunch length σ_{z} (mm)	4.4	5.9	8.5			
HOM power/cavity (2 cell) (kw)	0.46	0.75	1.94	ŀ		
Energy spread (%)	0.134	0.098	0.08	0.080		
Energy acceptance requirement (%)	1.35	0.90	0.49)		
Energy acceptance by RF (%)	2.06	1.47	1.7			
Photon number due to beamstrahlung	0.082	0.050	0.023			
Beamstruhlung lifetime /quantum lifetime* (min)	80/80	>400				
Lifetime (hour)	0.43	1.4	4.6	2.5		
<i>F</i> (hour glass)	0.89	0.94	0.99)		
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1		

CEPC injector chain

- 10 GeV linac provides electron and positron beams for booster.
- Top up injection for collider ring ~ 3% current decay
- Booster is in the same tunnel as collider ring, above the collider ring.
- Booster has the same geometry as collider ring except for the two IRs.
- Booster bypasses the collider ring from the outer side at two IPs.

Design requirements for CEPC booster

Parameters	Design goals
Beam current (mA)	<1.0 mA(Higgs), 4.0 mA (W), 10 mA(Z)
Emittance@ 120GeV (nm rad)	<3.6
Dynamic aperture @10GeV(σ , normalized by linac beam size)	$>4\sigma+5mm$
Dynamic aperture @120GeV	>6ox+3mm, 49ox+3mm
Energy acceptance	>1%
Coupling	<0.5%
Booster transfer efficiency	>92%
Total transfer efficiency (inc. inj. & ext.)	>90% (99%*92%*99%)
Timing	Meet the top-up injection requirements

- Beam current threshold in booster is limited by RF power.
- The diameter of the inner aperture is selected as **55mm** for high current injection.
- Assumption for total efficiency **90%**: 92% for booster+ 99% for transport lines.
- Emittance@120GeV <3.6nm, energy acceptance >1%
- Coupling <0.5%: requirement of Higgs on-axis injection scheme
- DA@10GeV: BSC region, DA@120GeV:on-axis injection (V) & quan. lifetime (H)⁵

CEPC Linac

Parameter	Symbol	Unit	Baseline	Designed
e ⁻ /e ⁺ beam energy	E_{e}/E_{e+}	GeV	10	10
Repetition rate	f_{rep}	Hz	100	100
at /at hunch nonvertion	N_{e}/N_{e+}		$> 9.4 \times 10^9$	1.9×10 ¹⁰ / 1.9×10 ¹⁰
e ⁻ /e ⁺ bunch population		nC	> 1.5	3.0
Energy spread (e ⁻ /e ⁺)	σ_{e}		< 2×10 ⁻³	1.5×10 ⁻³ / 1.6×10 ⁻³
Emittance (e ⁻ /e ⁺)	\mathcal{E}_r	nm∙ rad	< 120	5 / 40 ~120
Bunch length (e^{-}/e^{+})	σ_l	mm		1/1
e ⁻ beam energy on Target		GeV	4	4
e ⁻ bunch charge on Target		nC	10	10

Booster parameters @ injection (10GeV)

		H	W	Ζ	
Beam energy	GeV	10			
Bunch number		242	1524	6000	
Threshold of single bunch current	μA		25.7		
Threshold of beam current (limited by coupled bunch instability)	mA	100			
Bunch charge	nC	0.78	0.63	0.45	
Single bunch current	μA	2.3	1.8	1.3	
Beam current	mA	0.57	2.86	7.51	
Natural Energy spread	%	0.0078			
Synchrotron radiation loss/turn	keV	73.5			
Momentum compaction factor	10-5	2.44			
Natural emittance	nm	0.025			
Natural chromaticity	H/V	-336/-333			
RF voltage	MV	62.7			
Betatron tune $v_x/v_y/v_s$		263.2/261.2/0.1			
RF energy acceptance	%	1.9			
Damping time	S	90.7			
Bunch length of linac beam	mm	1.0			
Energy spread of linac beam	%	0.16			
Emittance of linac beam	nm	40~120			

Booster parameters @ extraction

		Н		W	Z
		Off axis injection	On axis injection	Off axis injection	Off axis injection
Beam energy	GeV	120		80	45.5
Bunch number		242	235+7	1524	6000
Maximum bunch charge	nC	0.72	24.0	0.58	0.41
Maximum single bunch current	μΑ	2.1	70	1.7	1.2
Threshold of single bunch current	μΑ	30	00		
Threshold of beam current (limited by RF power)	mA	1.	0	4.0	10.0
Beam current	mA	0.52	1.0	2.63	6.91
Injection duration for top-up (Both beams)	s	25.8	35.4	45.8	275.2
Injection interval for top-up	s	47.0		153.0	504.0
Current decay during injection interval			39	%	
Energy spread	%	0.094		0.062	0.036
Synchrotron radiation loss/turn	GeV	1.52		0.3	0.032
Momentum compaction factor	10-5		2.4	44	
Emittance	nm	3.:	57	1.59	0.51
Natural chromaticity	H/V		-336/	/-333	
Betatron tune v_x / v_y			263.2/	/261.2	
RF voltage	GV	1.97		0.585	0.287
Longitudinal tune		0.13		0.10	0.10
RF energy acceptance	%	1.0		1.2	1.8
Damping time	ms	52		177	963
Natural bunch length	mm	2.	8	2.4	1.3
Injection duration from empty ring	h	0.17		0.25	2.2

Beam instability

- Aluminum pipe with radius 27.5 mm is chosen
 - Higher threshold of beam current for reasonable injection time during z operation
 - Higher single bunch current threshold@120GeV (on-axis injection)
- Threshold of single bunch current (TMCI): 25.7uA (10GeV), 300 uA (120GeV)
- Threshold of beam current (resistive wall) w. FB: 127.5mA (10GeV)
 - Damping time of transverse feedback system: 1.67ms (~5 turns)
- Threshold of beam current (RF HOMs) w. FB: 100mA (10GeV)
- Total beam current limited by RF power: 1mA(H), 4mA(W), 10mA(Z)

Booster geometry design

- Booster has almost same geometry as collider ring except for the two IRs.
- ARC: booster is in between the two beams of collider ring, error= ± 0.17 m
 - -- precision of element length: $\sim 10^{-5}$ m
 - -- precision of dipole angle: ~10⁻⁷ rad
- IR: separation between detector center and booster: ~25 m
- Same circumference for booster and collider

Booster optics - ARC

- $90^{\circ}/90^{\circ}$ FODO cell
- 2 cells @ booster = 3 cells @ collider
- FODO length: 101m
- Noninterleave sextupole scheme

- Dispersion suppressor
 - two standard FODO cell
 - adjust bend strength- match the geometry of collider ring

Booster optics - RF

- Booster RF straight section at the same location as collider ring -3.4km
- Low average beta to reduce the multi-bunch instability by RF cavities -1.6km
 - 90°/ 90° FODO cell
 - Average beta: 30 m
 - Space between quadrupoles :14m

RFSEC

Booster optics – IR bypass

- In CEPC detector region, booster bypasses the collider ring from the outer side.
- 25m separation: requirements of civil engineering and the radiation protection

Off-momentum DA optimization

- Noninterleave sextupole scheme
- Two sext. families (SF, SD)
- Optimize the phase of the straight section between two octants automatically by downhill method
- Goal: reach 1% energy acceptance @ 120GeV including all kinds errors

Sawtooth effect @120GeV

- 2 RF stations
- Maximum sawtooth orbit: 1.7 mm
- Maximum optics distortion: ~2%, Maximum dispersion distortion: ~50 mm
- Emittance growth: ~0.3%
- No DA reduction due to sawtooth effect
- Magnets energy tapering is unnecessary

Booster error studies

- Gaussian distribution and cut-off at 3σ

Errors Setting

Parameters	Dipole	Quadrupole	Sextupole
Transverse shift x/y (µm)	50	70	70
Longitudinal shift z (µm)	100	150	100
Tilt about x/y (mrad)	0.2	0.2	0.2
Tilt about z (mrad)	0.1	0.2	0.2
Nominal field	3×10^{-4}	2×10^{-4}	3×10^{-4}

	Accuracy (m)	Tilt (mrad)	Gain	Offset after BBA(mm)
BPM	1×10 ⁻⁷	10	5%	30×10 ⁻³

Booster orbit with errors

- Beam pipe: 55mm (diameter)
- Orbit within the beam pipe
- "First turn trajectory" is not necessary

Horizontal Corrector: 1053 Vertical Corrector : 1054 BPM : 2108

Booster orbit & optics with COD corrections

- Orbit correction: response matrix and SVD
- RMS Orbit ~ 80um, RMS betabeat ~3.5%, RMS disp. ~15mm
- Emittance growth < 10% for the simulation seeds
- Coupling <10% before coupling correction
- RMS coupling: 0.5% after coupling correction (512 Sextupoles)

Hor. 80um / Ver. 79um

Hor. 3.5% / Ver. 3.5%

100 random seeds

Dynamic aperture with errors

- With only COD corrections, DA is nearly two thirds of bare lattice
- At 120GeV, radiative damping and sawtooth was considered.
- DA requirement @ 10GeV determined by the beam stay clear region
- DA requirement @ 120GeV: 1) H- quantum lifetime, 2) V- re-injection process from the collider in the on-axis injection scheme

• Requirement for linac emittance: < 150nm, otherwise BSC > beam pipe

Emittance evolution

- Emittance @injection = 120nm
- Emittance is small enough for H &W after ramping, extra 5s damping for Z
- Beam loss due to lifetime at low energy determined by the emittance of Linac and the DA.

RF ramping curve

- nus=0.13 (Higgs), nus=0.1 (W&Z)
- 10 GeV & 45 GeV: transverse quantum lifetime
- 80GeV & 120 GeV: longitunidal quantum lifetime
- Beam loss during ramping due to lifetime << 1%

Eddy current effect

- During ramping, parasitic sextupole field is induced on beam pipe inside dipoles due to eddy current.
- Ramping rate is limited by eddy current effect.
- Dedicated ramping curve to control the maximum K2.

- Chromaticity distortion is corrected by 2 sext. families (SF, SD) during ramping.
- K2 reach maximum at 20GeV
- k2 curve is checked by dynamic magnetic 3D simulation

Booster DA with eddy current

➢ BSC @20GeV: 0.023m(H)×0.012m(V)

- Sextupole coils outside vacuum chamber are considered
 - Copper wire d=0.5mm
 - Current: 0.16A
 - Voltage: 2.5V
 - Current density: 0.8 A/mm²
 - Fix with glue (epoxy), air cooling

Alternative: Sextupole coils attached to CCT dipole

Dipole reproducibility requirement@10Gev

- Increase/decrease the strength of all the dipoles by the same amount.
- Decrease/increase the strength of quadrupoles & sextupoles \rightarrow energy mismatch
- Evaluate the influence: working point, closed orbit, DA, energy acceptance
- Working point should not pass through the lower order resonance (<4)
- No shrink for dynamic aperture
- **Reproducibility requirement: ~0.02%**

	original	+0.01%	-0.01%	+0.05%	-0.05%
nux	263.20376	263.1367	263.271	262.868	263.5397
nuy	261.21034	261.1437	261.277	260.877	261.5437
Δx (um)	0	-54	54	-270	270
DA (%)	100	100	100	90	90

Effect of earthfield @10GeV

- ~20% vacuum pipe (drift) is exposed in earthfield directly.
- treat drifts as week dipole to simulate the effect of earthfield
- Assume earthfield: ~0.6 gauss, no solution for the close orbit, optics unstable

 $(263.204, 261.210) \rightarrow (262.717, 260.727)$

- Without shielding to the bare pipe, the earthfield effect is intolerable.
- Global COD correction or dipole coils outside bare pipe are considered.

Study Plan Towards TDR

- Eddy current correction
- Error analysis @ 10GeV
- Small emittance lattice & DA optimization
- Beam simulation of the entire period from injection to extraction beam loss rate
- Effect of detector leak field & Shielding design
- Table ramping design & simulation

Summary

- The booster design can meet the injection requirements at three energy modes.
- Accelerator physics design satisfy the requirements of geometry, beam dynamics and key hardware.
- DA reduction due to eddy current effect is serious and local correction with extra sextupole coils is designed.
- Low magnetic field in the booster is still a challenge. Both technical and physical solutions are studied continuously.
- Further optimization design \rightarrow relax DA difficulty for collider
- Clear plan/goal for next step and ready to TDR phase.

Thanks for your attention!

Back up

FMA @ booster

Driven term @ booster

 $(h_{21000}, h_{30000}, h_{10110}, h_{10020}, and h_{10200})$

Driven term @ booster

 h_{22000} , h_{00220} 和 h_{11110}

CCT + sextupole coil 100 X 600 -7---51 -100 -200 Resistance (Ω) 0.0263 -200 3 Current (A) Voltage (V) 0.079 Power (W) 0.237 Inductance (mH) 0.024

0.11

Stored energy (mJ)